Synthesis and Crystal Structure of Sr₂ZnN₂ and Ba₂ZnN₂

Hisanori Yamane¹ and Francis J. DiSalvo²

Department of Chemistry, Cornell University, Ithaca, New York 14853

Received March 21, 1995; accepted June 7, 1995

EXPERIMENTAL

Ternary nitrides, Sr_2ZnN_2 and Ba_2ZnN_2 , were prepared from Sr or Ba along with Zn metal using Na metal and NaN₃ as a flux and nitrogen source, respectively. The single crystals were obtained by slow cooling from 750°C. Since these compounds hydrolyze in moist air, the crystals were isolated by washing away excess Na with liquid NH₃ in an inert environment. The structures were determined by single crystal X-ray diffraction: tetragonal, space group I 4/mmm with Z = 2, a = 3.8568(2), c = 12.935(1) Å, and R = 0.049 for Sr_2ZnN_2 , and a = 4.152(1), c = 13.055(3) Å, and R = 0.039 for Ba_2ZnN_2 . Sr_2ZnN_2 and Ba_2ZnN_2 are isostructural with Ca_2ZnN_2 (Na₂HgO₂ type) and contain linear $[N=Zn=N]^{4-}$ nitridometallate anions. \odot 1995 Academic Press, Inc.

INTRODUCTION

It is difficult to grow single crystals of many nitrides because they dissociate well before they sublime or melt (1). Li₃N, having a relatively low melting point (813°C), is an exception (2, 3). Single crystals of ternary nitrides containing lithium, such as Li₃FeN₂ (4), Li₇TaN₄ (5), and Li₇NbN₄ (6), have been synthesized using Li₃N as a flux. Although other alkali metals do not form binary nitrides, Jacobs and Hellmann obtained single crystals of $MNbN_2$ (M = Na and Cs) using alkali amides (MNH_2) as a nitrogen source (7, 8). These crystals presumably grew in the melts of alkali metals which were derived from the decomposition of the alkali amides. In the sodium-barium-nitrogen system, Simon and co-workers found single crystals of subnitrides, NaBa₃N (9), Na₁₆Ba₆N (10), Na₅Ba₃N, and Na₁₂Ba₇N₃ (11).

In the present paper, we describe the synthesis of Sr_2ZnN_2 and Ba_2ZnN_2 single crystals using Na as a flux and NaN₃ as a nitrogen source. NaN₃ decomposes to Na metal and N₂ gas around 300° C (12). Sr_2ZnN_2 (tetragonal, a = 3.85, c = 12.86 Å, space group: I 4/mmm) was first prepared by Kniep (13). The preparation and crystal structure of Ba_2ZnN_2 have not been reported previously.

All manipulations were carried out in an Ar-filled glove box. The starting materials used were Sr (Strem Chemicals, 98% purity), Ba (Aldrich, 99% purity), Zn (Alfa Aesher, shot 1–3 mm, 99.9999% purity), Na (Strem Chemicals, 99.9% purity), and NaN₃ (Aldrich, 99.9% purity). Sr 88 mg (1 mmole) or Ba 137 mg (1 mmole), and Na 32 mg (1.4 mmole), NaN₃ 40 mg (0.6 mmole), and Zn 33 mg (0.5 mmole) were sealed in an arc furnace under 1 atm of Ar in a Nb tube (8 mm diameter, 120 mm length), which in turn was sealed in an evacuated quartz tube. The starting materials were heated to 300–750°C for 1 hr and cooled with rates of $4.5-10^{\circ}$ C/hr.

The products prepared in the Nb tube were washed with liquid NH₃ to dissolve the Na flux. The washing was performed in a glass apparatus that allowed NH₃ to be distilled on to the sample, then tipped to carry away Na in liquid ammonia. The ammonia could then be redistilled back onto the sample, leaving the excess Na behind. The washing process was repeated until the solution was colorless. Some small single crystals were removed for crystallographic studies. The remainder of the sample was powdered in an agate mortar and characterized by powder Xray diffraction (Scintag XDS 2000) using CuK α radiation. The metal ratio in the single crystals was analyzed by energy dispersive X-ray spectroscopy (EDX) on a scanning electron microscope (Jeol 733).

X-ray single-crystal diffraction photographs were taken for the crystals sealed in glass capillaries with a precession camera using MoK α radiation. X-ray diffraction intensity data were collected with a four circle diffractometer using graphite-monochromated MoK α radiation. Lattice parameters were obtained by least-squares refinement using reflection peaks in the range 23° < 2 θ < 30°. Parameters of the data collections and crystallographic data are summarized in Table 1.

Absorption was corrected with an empirical correction program (XEMP) (14) using psi scan data. We adopted a laminar model since the crystals of Sr_2ZnN_2 and Ba_2ZnN_2 used for intensity data measurements had flat shapes in which the (001) planes were largest. Better results were

¹ Current address: Institute for Materials Research, Tohoku University, Sendai 980-77, Japan.

² To whom correspondence should be addressed.

Empirical formula	Sr ₂ ZnN ₂	Ba ₂ ZnN ₂
Formula weight	268.63	368.07
Diffractometer type	Siemens P4	Syntex P3
Monochromator	graphite	graphite
Scan type	$\omega - 2\theta$	$\omega - 2\theta$
Temperature	293(2) K	293(2) K
Wavelength	0.71073 Å (MoKα)	0.71073 Å (MoKα)
Crystal system	Tetragonal	Tetragonal
Space group	1 4/mmm (No. 139)	I 4/mmm (No. 139)
Unit cell dimensions	a = 3.8568(2) Å	a = 4.152(1) Å
	c = 12.935(1) Å	c = 13.055(3) Å
Volume	192.43(2) Å ³	225.06(9) Å ³
Ζ	2	2
Density (calculated)	4.636 Mg/m ³	5.431 Mg/m ³
Absorption coefficient	33.57 mm^{-1}	22.394 mm ⁻¹
F(000)	240	312
Crystal size	$0.09 \times 0.06 \times 0.03 \text{ mm}$	0.15 imes 0.30 imes 0.58 mm
θ range for data collection	5.52° to 27.48°	3.12° to 27.57°
Index ranges	$-5 \le h \le 5, 0 \le k \le 5, 0 \le l \le 16$	$0 \le h \le 5, 0 \le k \le 5, 0 \le l \le 16$
Reflections collected	233	158
Independent reflections	87 ($R_{\rm int} = 0.0546$)	$100 \ (R_{\rm int} = 0.0743)$
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2
Data/restraints/parameters	87/0/10	100/0/10
Goodness-of-fit on F^2	0.776	0.637
Final R indices $[I > 2 \sigma(I)]^a$	R = 0.0298, wR = 0.0910	$R \ 1 = 0.0390, \ wR \ 2 = 0.1059$
R indices (all data)	R = 0.0492, wR = 0.1107	$R \ 1 = 0.0390, \ wR \ 2 = 0.1059$
Extinction coefficient	0.004(5)	0.055(9)
Largest diff. peak and hole	1.027 and $-1.497 e A^{-3}$	3.079 and $-4.637 eA^{-3}$

 TABLE 1

 Crystal Data and Structure Refinements for Sr₂ZnN₂ and Ba₂ZnN₂

 ${}^{a}R 1 = \sum ||F_{o}| - |F_{c}|/\sum |F_{o}|; wR 2 = [\sum w (|F_{o}^{2} - F_{c}^{2}|)^{2}/\sum (wF_{o}^{2})^{2}]^{1/2}; w = 1/\sigma^{2}.$

obtained with a higher "take-off angle" which removes high absorption reflections along the (001) plane. In order to minimize any bias by removing reflections, take-off angles of 5° and 3° were used in the structure refinements of Sr_2ZnN_2 and Ba_2ZnN_2 , which remove 3 of 90 and 2 of 102 independent reflections, respectively.

Refinement was performed using SHELXL-93 (15). Extinction corrections were carried out during the refinements. The analytical forms of scattering factors for neutral atoms, as well as corrections for both real and imaginary components of anomalous dispersion, were used as given in the SHELXL-93 software.

RESULTS AND DISCUSSION

Preparation

Single crystals were obtained by slow cooling from 750 to 300°C at rates of 4.5°C/hr (Sr_2ZnN_2) and 6.4°C/hr (Ba_2ZnN_2). Below 300°C, the samples were more rapidly cooled to room temperature by shutting off the furnace. The size of the single crystals was below 0.1 mm for Sr_2ZnN_2 . On the other hand, single crystals with sizes of about 1–2 mm were obtained for Ba_2ZnN_2 . Thin platy crystals (~0.5 × 0.5 × 0.1 mm) of Ba_2ZnN_2 grew by heating

at 500°C and by cooling to 100°C at a rate of 6.4° C/hr. When the sample mixture was heated to 300°C for 1 hr and cooled again at 6.4° C/hr, the products consisted only of a mixture of polycrystalline Ba₃N₂ and BaZn₁₃. Only polycrystalline Sr₂ZnN₂ could be prepared by slow cooling from 500°C.

The single crystals of Sr_2ZnN_2 and Ba_2ZnN_2 had a dark metallic luster. The color of the powdered samples was dark reddish brown. They were sensitive to moisture and hydrolyzed in air to form NH₃. Semiquantitative EDX analysis showed that the Ba: Zn ratio in the Ba₂ZnN₂ crystals was 2.1:1, which is close to the ideal ratio of 2:1.

TABLE 2Atomic Coordinates and Equivalent Isotropic DisplacementParameters ($Å^2 \times 10^3$) for Sr₂ZnN₂

Atom	Site	x	у	z	U_{eq}
Sr	4e	0	0	0.3409(1)	7(1)
Zn	2b	0	0	0	9(1)
Ν	4 <i>e</i>	0	0	0.1449(12)	7(3)

Note. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

TABLE 3Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for Sr₂ZnN₂

Atom	U ₁₁	U ₂₂	U ₃₃	$U_{23} = U_{13} = U_{12}$
Sr	7(1)	7(1)	8(1)	0
Zn	10(2)	10(2)	6(2)	0
Ν	10(5)	16(5)	2(6)	0

Note. The anisotropic displacement factor exponent takes the form $-2 \pi^2 [(h \ a^*)^2 \ U_{11} + \cdots + 2h \ k \ a^* \ b^* \ U_{12}].$

TABLE 5Anisotropic Displacement Parameters ($Å^2 \times 10^3$) forBa-ZnN2

Atom	<i>U</i> ₁₁	U ₂₂	U_{33}	$U_{23} = U_{13} = U_{12}$
Ва	12(1)	12(1)	5(1)	0
Zn	12(1)	12(1)	3(2)	0
Ν	16(5)	16(5)	17(10)	0

Note. The anisotropic displacement factor exponent takes the form $-2 \pi^2 [(h \ a^*)^2 \ U_{11} + \cdots + 2h \ k \ a^* \ b^* \ U_{12}].$

Hubberstey (16) and Addison *et al.* (17) mentioned that alkali-earth metals in Na solutions enhanced the solubility of N₂ although the solubility of nitrogen in liquid sodium was extremely low $(7.1 \times 10^{-9} \text{ mole}\% \text{ N} \text{ at } 600^{\circ}\text{C})$. They studied the nitrogen solubility in Na-rich Na-Ba solution since barium was particularly effective in rendering N_2 soluble. According to their measurements, the N: Ba molar ratio in the solution is about 1:4. We assume then that barium and strontium play an important role in introducing nitrogen into the melts during the crystal growth of Sr_2ZnN_2 and Ba_2ZnN_2 . However, in the case of Ca, crystals of Ca_2ZnN_2 could not be obtained by this method. This suggests that calcium does not enhance the nitrogen solubility very much in comparison with barium or strontium. We also attempted to prepare crystals of Zn_3N_2 under the same conditions as those used in the Ba₂ZnN₂ single-crystal growth, but with no Ba in the melt. The product obtained was the binary intermetallic $NaZn_{13}$, rather than a nitride.

Crystal Structure

Precession photographs indicated tetragonal symmetry and showed a systematic extinction of h + k + l = 2n +1. The structure refinements of Sr₂ZnN₂ and Ba₂ZnN₂ were performed with a Na₂HgO₂-type structure model (space group: *I* 4/*mmm*) as was reported for Ca₂ZnN₂ (18) and Sr₂ZnN₂ (13). Final values of *R* 1 for all data were 4.9% for Sr₂ZnN₂ and 3.9% for Ba₂ZnN₂. Atomic positions and anisotropic displacement parameters are listed in Tables 2 and 3 for Sr₂ZnN₂ and in Tables 4 and 5 for Ba₂ZnN₂.

TABLE 4Atomic Coordinates and Equivalent Isotropic Displacement
Parameters ($Å^2 \times 10^3$) for Ba_2ZnN_2

Atom	Site	x	у	z	$U_{ m eq}$
Ba	4e	0	0	0.3443(1)	10(1)
Zn	2b	0	0	0	9(1)
N	4e	0	0	0.1411(11)	16(4)

Note. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Selected interatomic distances for Sr_2ZnN_2 and Ba_2ZnN_2 are summarized in Table 6.³

Figure 1 illustrates the structure of Sr_2ZnN_2 and Ba_2ZnN_2 . In the structure, a Zn atom is linearly coordinated by two nitrogen atoms to form a CO₂-isosteric [N = Zn = N⁴⁻ "dumb-bell." The bond distances of Zn-N in Sr_2ZnN_2 and Ba_2ZnN_2 are almost equal to the Zn-Ndistance of 1.8418 Å in Ca_2ZnN_2 (18) and the Fe-N distance (1.86(1) Å) of $[N = Fe = N]^{4-}$ dumb-bells in Li₄[FeN₂] (19). Sr and Ba atoms are coordinated by five nitrogen atoms and are close to lying in the square plane of the nitrogen square pyramid (Fig. 1). The average of the Sr-N distances in Sr_2ZnN_2 is consistent with the Sr-N distance of 2.6118(3) Å in Sr_2N (20). The Ba-N distances in Ba_2ZnN_2 are close to the Ba-N distances (2.77-3.04 Å) in Ba₃[FeN₃] where Ba atoms are coordinated by five nitrogen atoms (21). The Sr-Zn and Ba-Zn distances are comparable to those in $SrZn_5$ (3.25–3.92 Å) and $BaZn_5$ (3.40-3.89 Å) (22). The Ba-Ba distance agrees well with that in BaZn₅ (3.85 Å) and Ba₃[FeN₃] (3.82–3.92 Å). The

 TABLE 6

 Selected Interatomic Distances (Å) for Sr₂ZnN₂ and Ba₂ZnN₂

Sr ₂ 2	ZnN ₂	Ba ₂	ZnN ₂
N-Zn	1.874(15)	N-Zn	1.842(14)
N-Sr	2.536(15)	N-Ba	2.653(14)
N-Sr ^a	2.733(1)	N-Ba ^a	2.942(1)
Sr-Sr ^a	3.602(2)	Ba-Ba ^a	3.831(2)
Sr-Zn ^a	3.416(1)	Ba-Zn ^a	3.571(1)

"Symmetry transformations used to generate equivalent atoms: x + 1/2, y + 1/2, -z + 1/2.

³ See NAPS Document 05255 for 2 pages of supplementary material. Order from ASIS/NAPS, Microfiche Publications, P. O. Box 3513, Grand Central Station, New York, NY 10163. Remit in advance \$4.00 for microfiche copy or for photocopy, \$7.75 for up to 20 pages plus \$0.30 for each additional page. All orders must be prepaid. Institutions and organizations may order by purchase order. However, there is a billing and handling charge for this service of \$15.00. Foreign orders add \$4.50 for postage and handling, for the first 20 pages, \$1.00 for each additional 10 pages of material, and \$1.50 for postage of any microfiche orders. distance between Sr and Sr atoms in Sr_2ZnN_2 is shorter than that in $SrZn_5$ (4.02 Å) and Sr_2N (3.8566(1) Å), but are in the range of the Sr—Sr distances observed in $Sr_3[Al_2N_4]$ (3.368–3.772 Å) (23).

As shown in Fig. 2, the crystal structure of Sr_2ZnN_2 and Ba_2ZnN_2 can also be viewed as a stacking of nitrogencentered metal octahedra. The structure consists of Sr-Sr (or Ba-Ba) edge-sharing double octahedral layers linked by sharing of the apical zinc atoms.

Sr₂ZnN₂ and Ba₂ZnN₂, as well as Ca₂ZnN₂, have Na₂HgO₂-type structures. The +2 ionic radii of the alkaliearth atoms (Ca, Sr, Ba) increase from 1.00 to 1.35 Å (24). Oxides having Na₂HgO₂-type structures crystallize with M = Li, Na, K, Rb, and Cs (+1 ionic radius 0.76–1.67 Å) for M₂HgO₂ (25), and with M = K, Rb, and Cs (1.38–1.67 Å) for M₂NiO₂ (26). It is apparent that the important structural feature is the linear anion and that the structure easily adapts to a broad range of cation sizes.

To summarize, the single crystals of Sr_2ZnN_2 and Ba_2ZnN_2 were synthesized by slow cooling from 750 and from 500°C, respectively, using Na as a flux. Single-crystal X-ray diffraction analysis revealed that the structures of Sr_2ZnN_2 and Ba_2ZnN_2 were the same Na_2HgO_2 type. We expect that the single crystals of other new ternary nitrides

FIG. 2. Structure of Sr_2ZnN_2 and Ba_2ZnN_2 illustrated with nitrogencentered edge and vertex-shared metal octahedra.

can be obtained using Na flux when a second alloying metal is used to solubilize N. We are testing main group metals other than Sr and Ba to see if similar behaviour is apparent.

ACKNOWLEDGMENTS

This work was supported in part by National Science Foundation Grant DMR-8920583 and a fellowship for H.Y. from the Ministry of Education, Science, and Culture, Japan. We thank Glen Kowach and Steve Trail for their help with sample preparation and for useful discussions. We also thank Emil Lobkovsky for aid with the structure determination.

REFERENCES

- J. Lang, Y. Laurent, M. Maunaye, and R. Marchand, *in* "Progress in Crystal Growth and Characterization" (B. R. Pamplin, Ed.), Vol. 2, p. 207. Pergamon, Oxford, 1979.
- P. F. Adams, P. Hubberstey, and R. J. Pulham, J. Less-Common Met. 42, 1 (1975).
- R. M. Yonco, E. Veleckis, and V. A. Maroni, J. Nucl. Mater. 57, 317 (1975).
- A. Gudat, R. Kniep, and A. Rabenau, J. Less-Common Met. 161, 31 (1990).
- 5. Ch. Wachmann and H. Jacobs, J. Alloys Comp. 190, 113 (1992).
- D. A. Vennos and F. J. DiSalvo, Acta Crystallogr. Sect. C 48, 610 (1992).
- 7. H. Jacobs and B. Hellmann, J. Alloys Comp. 191, 51 (1993).
- 8. H. Jacobs and B. Hellmann, J. Alloys Comp. 191, 277 (1993).
- 9. P. E. Rauch and A. Simon, Angew. Chem. Int. Ed. Engl. 31, 1519 (1992).
- 10. G. J. Snyder and A. Simon, Angew. Chem. Int. Ed. Engl. 33, 689 (1994).
- 11. G. J. Snyder, personal communication.

FIG. 1. Structure of Sr_2ZnN_2 and Ba_2ZnN_2 where the bonds in the $[N=Z=N]^{4-}$ units are emphasized.

- 12. N. N. Greenwood and A. Earnshaw, *in* "Chemistry of the Elements," p. 471. Pergamon, Oxford, 1986.
- 13. P. Kniep, personal communication.
- 14. "XEMP Software," Siemens Analytical X-Ray Instruments, Inc.
- 15. "SHELXL-93 Software," Siemens Analytical X-Ray Instruments, Inc.
- P. Hubberstey, *in* "Liquid Alkali Metals; Proceedings of the International Conference Organized by the British Nuclear Energy Society," p. 15. London, 1973.
- 17. C. C. Addison, R. J. Pulham, and E. A. Trevillion, J. Chem. Soc. 2082 (1975).
- 18. M. Y. Chern and F. J. DiSalvo, J. Solid State Chem. 88, 528 (1990).

- A. Gudat, R. Kniep, and A. Rabenau, Angew. Chem. Int. Ed. Engl. 30, 199 (1991).
- 20. N. E. Brese and M. O'Keeffe, J. Solid State Chem. 87, 134 (1990).
- 21. P. Höhn, R. Kniep, and A. Rabenau, Z. Kristallogr. 196, 153 (1991).
- 22. N. C. Baenziger and J. W. Conant, Acta Crystallogr. 9, 361 (1956).
- 23. W. Blase, G. Cordier, M. Ludwig, and R. Kniep, Z. Naturforsch B 49, 501 (1994).
- 24. R. D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).
- V. R. Hoppe and H.-J. Röhrborn, Z. Anorg. Allg. Chem. 329, 110 (1964).
- 26. V. H. Rieck and R. Hoppe, Z. Anorg. Allg. Chem. 400, 311 (1973).